If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+16n-18=0
a = 1; b = 16; c = -18;
Δ = b2-4ac
Δ = 162-4·1·(-18)
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{82}}{2*1}=\frac{-16-2\sqrt{82}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{82}}{2*1}=\frac{-16+2\sqrt{82}}{2} $
| (3m^2)-22m-45=0 | | 6x+9=9x-4x | | a+2(3a-6)=30-2(a-3) | | |4x+9|=11 | | 5z=3z+14 | | u÷4=7 | | 2x2+4x-576=0 | | 62x+1,138-40=30(40x+68) | | (3/1)+a=(4/5) | | 2x57+x=-6 | | -2(4n-3)=12 | | x+3=9+2x | | 2x-44+x+9=90 | | 7(y+4)=6y | | (x+3)^2-5=9 | | 8z+2z=9z+1 | | À=3(2-4x) | | 2x+90=4x+10 | | 38x+3,462x-22=70(50x+39) | | −5(p+3/5 )=−4 | | 2/5=x/19 | | 4/5=-28/x | | H=2a/20 | | 3x=6+3(x–2) | | 8k+3k=4k+8 | | 1/8+c=4/5 | | −0.4=g/3 −0.9 | | 2a=a+2/a | | D(g)=25g | | j+36/9=6 | | X-4+x-4=x+2 | | f-85/2=5 |